Abstract

An approximation theory is given for a very general class of elliptic quadratic forms which includes the study of 2nth order (usually in integrated form), selfadjoint, integral-differential equations. These ideas follows in a broad sense from the quadratic form theory of Hestenes, applied to integral-differential equations by Lopez, and extended with applications for approximation problems by Gregory. The application of this theory to a variety of approximation problem areas in this setting is given. These include focal point and focal interval problems in the calculus of variations/optimal control theory, oscillation problems for differential equations, eigenvalue problems for compact operators, numerical approximation problems, and finally the intersection of these problem areas. In the final part of our paper our ideas are specifically applied to the construction and counting of negative vectors in two important areas of current applied mathematics: In the first case we derive comparison theorems for generalized oscillation problems of differential equations. The reader may also observe the essential ideas for oscillation of many nonsymmetric (indeed odd order) ordinary differential equation problems which will not be pursued here. In the second case our methods are applied to obtain the “Euler-Lagrange equations” for symmetric tridiagonal matrices. In this significant new result (which will allow us to reexamine both the theory and applications of symmetric banded matrices) we can construct in a meaningful way, negative vectors, oscillation vectors, eigenvectors, and extremal solutions of classical problems as well as faster more efficient algorithms for the numerical solution of differential equations. In conclusion it appears that many physical problems which involve symmetric differential equations are more meaningful presented as integral differential equations (effects of friction on physical processes, etc.). It is hoped that this paper will provide the general theory and present examples and methods to study integral differential equations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.