Abstract
A theorem by K. Meyer and D. Schmidt says that The reduced three-body problem in two or three dimensions with one small mass is approximately the product of the restricted problem and a harmonic oscillator [7]. This theorem was used to prove dynamical continuation results from the classical restricted circular three-body problem to the three-body problem with one small mass. We state and prove a similar theorem applicable to a larger class of mechanical systems. We present applications to spatial $(N+1)$-body systems with one small mass and gravitationally coupled systems formed by a rigid body and a small point mass.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.