Abstract
Nonlinear equality and inequality constrained optimization problems with uncertain parameters can be addressed by a robust worst-case formulation that is, however, difficult to treat computationally. In this paper we propose and investigate an approximate robust formulation that employs a linearization of the uncertainty set. In case of any norm bounded parameter uncertainty, this formulation leads to penalty terms employing the respective dual norm of first order derivatives of the constraints. The main advance of the paper is to present two sparsity preserving ways for efficient computation of these derivatives in the case of large scale problems, one similar to the forward mode, the other similar to the reverse mode of automatic differentiation. We show how to generalize the techniques to optimal control problems, and discuss how even infinite dimensional uncertainties can be treated efficiently. Finally, we present optimization results for an example from process engineering, a batch distillation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.