Abstract

A path in a Riemannian manifold can be approximated by a path meeting only finitely many times the cut locus of a given point. The proof of this property uses recent works of Itoh–Tanaka and Li–Nirenberg about the differential structure of the cut locus. We present applications in the regularity theory of optimal transport.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.