Abstract

Hot (explosive) hydrogen burning or the Rapid Proton Capture Process (rp-process) occurs in a number of astrophysical environments. Novae and X-ray bursts are the most prominent ones, but accretion disks around black holes and other sites are candidates as well. The expensive and often multidimensional hydro calculations for such events require an accurate prediction of the thermonuclear energy generation, while avoiding full nucleosynthesis network calculations. In the present investigation we present an approximation scheme applicable in a temperature range which covers the whole range of all presently known astrophysical sites. It is based on the concept of slowly varying hydrogen and helium abundances and assumes a kind of local steady flow by requiring that all reactions entering and leaving a nucleus add up to a zero flux. This scheme can adapt itself automatically and covers situations at low temperatures, characterized by a steady flow of reactions, as well as high temperature regimes where a $(p,\gamma)-(\gamma,p)$-equilibrium is established. In addition to a gain of a factor of 15 in computational speed over a full network calculation, and an energy generation accurate to more than 15 %, this scheme also allows to predict correctly individual isotopic abundances. Thus, it delivers all features of a full network at a highly reduced cost and can easily be implemented in hydro calculations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.