Abstract
In a widely-studied class of multi-parametric optimization problems, the objective value of each solution is an affine function of real-valued parameters. Then, the goal is to provide an optimal solution set, i.e., a set containing an optimal solution for each non-parametric problem obtained by fixing a parameter vector. For many multi-parametric optimization problems, however, an optimal solution set of minimum cardinality can contain super-polynomially many solutions. Consequently, no polynomial-time exact algorithms can exist for these problems even if textsf {P}=textsf {NP}. We propose an approximation method that is applicable to a general class of multi-parametric optimization problems and outputs a set of solutions with cardinality polynomial in the instance size and the inverse of the approximation guarantee. This method lifts approximation algorithms for non-parametric optimization problems to their parametric version and provides an approximation guarantee that is arbitrarily close to the approximation guarantee of the approximation algorithm for the non-parametric problem. If the non-parametric problem can be solved exactly in polynomial time or if an FPTAS is available, our algorithm is an FPTAS. Further, we show that, for any given approximation guarantee, the minimum cardinality of an approximation set is, in general, not ell -approximable for any natural number ell less or equal to the number of parameters, and we discuss applications of our results to classical multi-parametric combinatorial optimizations problems. In particular, we obtain an FPTAS for the multi-parametric minimum s-t-cut problem, an FPTAS for the multi-parametric knapsack problem, as well as an approximation algorithm for the multi-parametric maximization of independence systems problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.