Abstract

Variable energy constraints affect the implementations of neural networks on battery-operated embedded systems. This paper describes a learning algorithm for randomization-based neural networks with hard-limit activation functions. The approach adopts a novel cost function that balances accuracy and network complexity during training. From an energy-specific perspective, the new learning strategy allows to adjust, dynamically and in real time, the number of operations during the network’s forward phase. The proposed learning scheme leads to efficient predictors supported by digital architectures. The resulting digital architecture can switch to approximate computing at run time, in compliance with the available energy budget. Experiments on 10 real-world prediction testbeds confirmed the effectiveness of the learning scheme. Additional tests on limited-resource devices supported the implementation efficiency of the overall design approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.