Abstract

Founded upon the scaled memoryless symmetric rank-one updating formula, we propose an approximation of the Newton-type proximal strategy for minimizing the nonsmooth composite functions. More exactly, to approximate the inverse Hessian of the smooth part of the objective function, a symmetric rank-one matrix is employed to straightly compute the search directions for a special category of well-known functions. Convergence of the given algorithm is argued with a nonmonotone backtracking line search adjusted for the corresponding nonsmooth model. Also, its practical advantages are computationally depicted in the two well-known real-world models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.