Abstract
In this article we provide generalizations of Specht's theorem which states that two n × n matrices A and B are unitarily equivalent if and only if all traces of words in two non-commuting variables applied to the pairs (A, A*) and (B, B*) coincide. First, we obtain conditions which allow us to extend this to simultaneous similarity or unitary equivalence of families of operators, and secondly, we show that it suffices to consider a more restricted family of functions when comparing traces. Our results do not require the traces of words in (A, A*) and (B, B*) to coincide, but only to be close.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.