Abstract
In this article, we discuss fractional order optimal control problems (FOCPs) and their solutions by means of rational approximation. The methodology developed here allows us to solve a very large class of FOCPs (linear/nonlinear, time-invariant/time-variant, SISO/MIMO, state/input constrained, free terminal conditions etc.) by converting them into a general, rational form of optimal control problem (OCP). The fractional differentiation operator used in the FOCP is approximated using Oustaloup’s approximation into a state-space realization form. The original problem is then reformulated to fit the definition used in general-purpose optimal control problem (OCP) solvers such as RIOTS_95, a solver created as a Matlab toolbox. Illustrative examples from the literature are reproduced to demonstrate the effectiveness of the proposed methodology and a free final time OCP is also solved.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.