Abstract

This paper presents a numerical solution scheme for a class of fractional differential equations (FDEs). In this approach, the FDEs are expressed in terms of Caputo type fractional derivative. Properties of the Caputo derivative allow one to reduce the FDE into a Volterra type integral equation. Once this is done, a number of numerical schemes developed for Volterra type integral equation can be applied to find numerical solution of FDEs. In this paper the total time is divided into a set of small intervals, and between two successive intervals the unknown functions are approximated using quadratic polynomials. These approximations are substituted into the transformed Volterra type equation to obtain a set of equations. Solution of these equations provides the solution of the FDE. The method is applied to solve two types of FDEs, linear and nonlinear. Results obtained using the scheme presented here agree well with the analytical solutions and the numerical results presented elsewhere. Results also show that the numerical scheme is stable.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.