Abstract
In this paper, we use the penalty approach in order to study a class of constrained vector minimization problems on complete metric spaces. A penalty function is said to have the generalized exact penalty property iff there is a penalty coefficient for which approximate solutions of the unconstrained penalized problem are close enough to approximate solutions of the corresponding constrained problem. For our class of problems, we establish the generalized exact penalty property and obtain an estimation of the exact penalty.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.