Abstract
We present an approximate bundle method for solving nonsmooth equilibrium problems. An inexact cutting-plane linearization of the objective function is established at each iteration, which is actually an approximation produced by an oracle that gives inaccurate values for the functions and subgradients. The errors in function and subgradient evaluations are bounded and they need not vanish in the limit. A descent criterion adapting the setting of inexact oracles is put forward to measure the current descent behavior. The sequence generated by the algorithm converges to the approximately critical points of the equilibrium problem under proper assumptions. As a special illustration, the proposed algorithm is utilized to solve generalized variational inequality problems. The numerical experiments show that the algorithm is effective in solving nonsmooth equilibrium problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.