Abstract

Combating the environmental crisis caused by mismanaged plastic waste is a global challenge, especially in developing regions due to a lack of recycling availability and waste management infrastructure. One way communities can combat this challenge is by using the process of slow pyrolysis to convert plastic waste into liquid cooking fuel. Using this fuel in cookstoves can help combat the public health issue caused by breathing in smoke from a cooking fire. Open fire cooking remains a common means of cooking in the developing world, and long-term exposure to smoke can lead to chronic lung and eye health problems. The burden of these health problems falls disproportionately on women. Our hypothesis is that switching from wood fire cooking to using stoves fueled by liquid fuel produced from waste plastic will have a positive impact on indoor air pollution, including particulate matter, sulfur dioxide, and carbon monoxide. To test this hypothesis, a series of experiments to measure particulate emissions, sulfur dioxide, and carbon monoxide were conducted. Cookstoves similar to those used in households in developing countries were used when conducting experiments. The results of these experiments indicated that polyfuel produces less particulate than fire wood, with an average PM2.5 of 7.7 μg/m<sup>3</sup> compared with fire wood which had a PM2.5 of 325.6 μg/m<sup>3</sup>. Polyfuel also produces no sulfur dioxide emissions. Kerosene, which is a traditional cooking fuel in much of the world, produced sulfur dioxide emissions of 5.2 ppm under the experimental conditions. If implemented globally, the results of this research suggest that converting plastic waste into cooking fuel can not only reduce the amount of plastic waste entering the ecosystem but can also combat the global public health problems caused by open fire cooking.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call