Abstract
Anti-NASICON-structured Fe2(MoO4)3 (FMO) thin films are formed on NASICON-structured LATP solid-state electrolyte by pulsed laser deposition, and their electrochemical properties are investigated. The FMO thin films operate at 3.0 V flat voltage vs. Li/Li+ within the potential window of LATP. The apparent diffusion coefficient of the FMO thin film on LATP is almost consistent with that measured in a conventional organic liquid electrolyte (0.5–1.2 × 10-12 cm2 s−1) and stable and fast charge–discharge reactions are realized. These results indicate that FMO/LATP is appropriate as a reference and counter electrode for all-solid-state batteries using NASICON-structured LATP. Combining crystalline electrode-solid electrolytes with a similar framework structure at relatively low temperatures will play an important role in realizing reversible electrode reactions. An all-solid-state battery, FMO/LATP/LiCoO2, is developed to apply the FMO as a reference and counter electrode, and the SSB operates at 1.0 V without visible capacity fading.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.