Abstract

Noroviruses are highly contagious and are one of the leading causes of acute gastroenteritis worldwide. Due to a lack of effective antiviral therapies, there is a need to diagnose and surveil norovirus infections to implement quarantine protocols and prevent large outbreaks. Currently, the gold standard of diagnosis uses reverse transcription polymerase chain reaction (RT-PCR), but PCR can have limited availability. Here, we propose a combination of a tunable peptide substrate and gold nanoparticles (AuNPs) to colorimetrically detect the Southampton norovirus 3C-like protease (SV3CP), a key protease in viral replication. Careful design of the substrate employs a zwitterionic peptide with opposite charged moieties on the C- and N- termini to induce a rapid color change visible to the naked eye; thus, this color change is indicative of SV3CP activity. This work expands on existing zwitterionic peptide strategies for protease detection by systematically evaluating the effects of lysine and arginine on nanoparticle charge screening. We also determine a limit of detection for SV3CP of 28.0 nM with comparable results in external breath condensate, urine, and fecal matter for 100 nM of SV3CP. The key advantage of this system is its simplicity and accessibility, thus making it an attractive tool for qualitative point-of-care diagnostics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.