Abstract
Human Computer Interaction (HCI) challenges in mobile computing can be addressed by tailoring access and use of mobile services to user preferences. Our investigation of existent approaches to personalisation in context-aware computing found that user preferences are assumed to be static across different context descriptions, whilst in reality some user preferences are transient and vary with the change in context. Furthermore, existent preference models do not give an intuitive interpretation of a preference and lack user expressiveness. To tackle these issues, this paper presents a user preference model and mining framework for a context-aware m-services environment based on an intuitive quantitative preference measure and a strict partial order preference representation. Experimental evaluation of the user preference mining framework in a simulated m-Commerce environment showed that it is very promising. The preference mining algorithms were found to scale well with increases in the volumes of data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.