Abstract

An approach to the simulation of foamed injection molded Polypropylene parts subjected to impact loading is presented in this paper. The proposed method, which considers strain-rate-dependent material properties and the possible occurrence of fracture, is, in particular, suitable for parts manufactured with core-back technology. The method was developed to be used within the functionality of a commercial Finite Element solver using a shell-type element mesh. The material model is based on a three-layer structure, with two compact skin layers and a foamed core layer made of expanded material. The properties of the foamed material are assumed as those of the compact grade scaled by a suitable factor, which is identified via inverse engineering on a set of bending tests executed on specimens having different foam densities. The fracture of the material is then predicted using a damage model which considers the effects of triaxiality. The approach is then validated on industrial parts from the automotive sector, subjected to impact in a component test. Despite the simplicity of the presented approach, which makes this method suitable for industrial applications and especially for early-stage design, the validation shows a sufficiently accurate simulation of part behavior under the impact, with a reasonable prediction of damage and fracture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.