Abstract

This paper discusses stability of neural network (NN)-based control systems using Lyapunov approach. First, it is pointed out that the dynamics of NN systems can be represented by a class of nonlinear systems treated as linear differential inclusions (LDI). Next, stability conditions for the class of nonlinear systems are derived and applied to the stability analysis of single NN systems and feedback NN control systems. Furthermore, a method of parameter region (PR) representation, which graphically shows the location of parameters of nonlinear systems, is proposed by introducing new concepts of vertex point and minimum representation. From these concepts, an important theorem, which is useful for effectively finding a Lyapunov function, is derived. Stability criteria of single NN systems are illustrated in terms of PR representation. Finally, stability of feedback NN control systems, which consist of a plant represented by an NN and an NN controller, is analyzed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.