Abstract
Thermodynamic analysis is an effective tool in screening of lead-compounds for development of potential drug candidates. In most cases, a ligand achieve high affinity and specificity to a target protein by means of both favorable enthalpy and entropy terms, which can be reflected in binding profiles of Isothermal Titration Calorimetry (ITC). A favorable enthalpy change suggests the contribution of noncovalent contacts such as hydrogen bonding and van der Waals interaction between a ligand and its target protein. In general, optimization of binding enthalpy is more difficult than that of entropies in ligand-design; therefore, it is desirable to choose firstly a lead-compound based on its binding enthalpic gain. In this paper, we demonstrate the utility of thermodynamic approach to ligand screening using anti-ciguatoxin antibody 10C9 as a model of a target protein which possesses a large hydrophobic pocket. As a result of this screening, we have identified three compounds that could bind to the antigen-binding pocket of 10C9 with a few kcal/mol of favorable binding enthalpy. Comparison of their structure with the proper antigen ciguatoxin CTX3C revealed that 10C9 rigorously identifies their cyclic structure and a characteristic hydroxyl group. ITC measurement might be useful and powerful for a rational ligand screening and the optimization of the ligand; the enthalpic gain is an effective index for ligand-design studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.