Abstract

Soil-rock mixture (SRM) shows complicated mechanical behaviors due to their complex compositions and structures, leading to challenging instability problems during the construction process. Typical SRM are composed of rocks with high strength and fine grained soils, and the mechanical characteristic is largely controlled by the rock block proportion (RBP) and component properties. It is noted that the rock sizes of natural SRM make it difficult for laboratory or in situ tests. There are few studies on empirical formulas to predict the mechanical characteristics of SRM. In this study, the nonlinear relationship between SRM shear strength and RBP was investigated, and an empirical formula predicting the shear strength of mixtures consisted of strong rocks and a weak soil matrix was proposed. For this purpose, a database of shear strength and uniaxial compressive strength (UCS) of SRM with different RBPs was built firstly on the basis of the laboratory test results from previous literatures. In order to focus on the interactions of rock blocks and soil matrix in SRM, a RBP range of 30–90% was set as the applicable range of the empirical formula and both of the compositions are held to provide shear resistance in the applicable range. Subsequently, a nonlinear equation to calculate the shear strength of SRM with RBP range of 30–90% was proposed using regression analysis considering the strengths of components and soil-rock contact faces. Several representative properties of rocks and soil matrix, such as RBP, UCS of the matrix (UCSm), and the friction angle of the blocks (φblock), were chosen as the input parameters based on the mechanical properties of SRM. An additional parameter “A” was used to describe the connect strengths of the soil-rock contact faces. In addition, uniaxial compression tests and large-scale direct shear tests were performed on the Taoyuan SRM samples. The test results and other measured data from the database were used to compare with the corresponding estimated values. The results demonstrated that the empirical approach could predict the shear strength with R2 = 0.75 and can be considered a practical tool in engineering designs when mechanical tests are not available.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call