Abstract
Thermoelectric power generators require semiconductor materials with controlled phonon and free charge carrier transport properties. This could be achieved by changing their molecular and lattice dynamics through introducing/controlling structural imperfections (defects engineering). The structural imperfections such as point defects and compositional segregations in a multicomponent alloy are observed experimentally, and their impact on electron and phonon transport properties was explained. The thermoelectric properties of a III-V ternary alloy InGaSb was improved by the presence of point defects and compositional segregations. The compositions were segregated randomly, and they had a major impact on the phonon contribution to the thermal conductivity. The point defects affected electrical resistivity, and the Seebeck coefficient was influenced by carrier concentration. The figure of merit (ZT) of In0.95Ga0.05Sb is enhanced to 0.62 at 573 K, and it is the highest among any other reported values of binary/ternary III-V semiconductor alloys. The enhancement in the ZT of InGaSb from the viewpoints of point defects and compositional segregations are explained. This experimental defect engineering study could be helpful to understand and improve the thermoelectric properties of many other crystalline materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.