Abstract
We introduce a novel approach to controlling the motion of a team of agents so that they jointly minimize a cost function utilizing Bayes risk. We use a particle-based approach and approximations that allow us to express the optimization problem as a mixed-integer linear program. We illustrate this approach with an area protection problem in which a team of mobile agents must intercept mobile targets before the targets enter a specified area. Bayes risk is a useful measure of performance for applications where agents must perform a classification task. By minimizing Bayes risk, agents are able to explicitly account for the cost of incorrect classification. In our application, a team of mobile agents must classify potential mobile targets as threat or safe based on the likelihood the targets will enter the specified area. The agents must also maneuver to intercept targets that are classified as threat.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.