Abstract

<p>The pore structure of soil is known to be dynamic at time scales ranging from seconds (e.g. compaction) to seasons (e.g. root growth, macro-faunal activity) and even decades to centuries (e.g. changes in organic matter content). Nevertheless, soil physical and hydraulic functions are generally treated as static properties in most soil-crop models. Some models account for seasonal variations in soil properties (e.g. bulk density) due to tillage loosening and post-tillage consolidation or soil sealing. However, no model can account for longer-term changes in soil structure due to biological agents and processes. The development of such a model remains a challenge due to the enormous complexity of the interactions in the soil-plant system. Here, we present a new concept for modelling soil structure evolution impacted by biological processes such as root growth and earthworm activity. In this preliminary test of the model, we compare simulations against field observations made at the Soil Structure Observatory (SSO) in Zürich, Switzerland, that was designed to provide information on soil structure recovery following a severe compaction event. In this simple application, we modelled changes in the pore size distribution in a bare soil treatment resulting from soil ingestion and egestion by earthworms and the loosening of compacted soil by casting at the soil surface. Following calibration, the model was able to reproduce the observed temporal development of total porosity, soil bulk density and pore size distribution during a four-year period following severe traffic compaction. The modelling approach presented here appears promising and could help support the development of cost-efficient strategies for sustainable soil management and the restoration of degraded soils.</p>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.