Abstract
This paper describes a new viewpoint for static voltage stability enhancement based on an improved particle swarm optimization technique. The objective function is selected for maximization of reactive power reserve subjected to usual operating constraints at an operating point. Probabilistic risk of voltage collapse has been used for maintaining desired level of voltage stability margin. This risk of voltage collapse is calculated accounting uncertainties in system parameters and control variables. Probabilistic risk of voltage collapse has been obtained by a trained Radial Basis Function network. Developed algorithm has been implemented on 6-bus, 14-bus and 25-bus IEEE test systems. Results have been compared with those obtained using Davidon–Fletcher–Powell's (DFP) method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.