Abstract

Background: Partial metallurgical bond (namely 'hook') is formed between the overlapped metal sheets during friction stir spot welding (FSSW). The geometry of hook is found to significantly affect the mechanical performance of FSSWed joints, while that how to adjust hook geometry to a better state remains to be studied. Methods: The conventional FSSW joints under different plunge depths and dwelling time were obtained. The cross-sectional morphology of each spot weld was investigated to clarify the material flow behavior and deduce the formation mechanism of hook. The tensile shear strength and fracture features were examined to reveal the effect of hook geometry on the mechanical properties. Results: The weld geometry affects the tensile shear strength of FSSWed joints by determining their fracture modes. The formation mechanism of hook is deduced by a material flow model. In the toolplunging stage, the faying interface is broken by upward-flowing materials, hook is therefore initiated and driven up gradually. During the tool-dwelling stage, hook continues to migrate to the lowpressure zone, surrounding the stir zone. Conclusion: The uncertainty of crack-propagating endpoint along hook makes it difficult to ensure the mechanical properties of welds. If the hook endpoint has not yet reached the low-pressure zone at the end of welding process, welds with ideal hook geometry can be obtained. Target friction stir spot welds were produced by the use of a tool possessing smaller pin diameter.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call