Abstract

A new type of photovoltaic device where GaAs/GaInNAs multiple quantum wells (MQW) or superlattice (SL) are inserted in the i-region of a GaAs p-i-n solar cell (SC) is presented. The results suggest the device can reach record efficiencies for single-junction solar cells. A theoretical model is developed to study the performance of this device. The conversion efficiency as a function of wells width and depth is modeled for MQW solar cells. It is shown that the MQW solar cells reach high conversion efficiency values. A study of the SL solar cell viability is also presented. The conditions for resonant tunneling are established by the matrix transfer method for a superlattice with variable quantum wells width. The effective density of states and the absorption coefficient for SL structure are calculated in order to determinate the J-V characteristic. The influence of superlattice length on the conversion efficiency is researched, showing a better performance when width and cluster numbers are increased. The SL solar cell conversion efficiency is compared with the maximum conversion efficiency obtained for the MQW solar cell and shows an efficiency enhancement.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call