Abstract

An approach for estimating thermodynamic properties of gases from the speed of sound u, is proposed. The square u2, the compression factor Z and the molar heat capacity at constant volume CV are connected by two coupled nonlinear partial differential equations. Previous approaches to solving this system differ in the conditions used on the range of temperature values [Tmin,Tmax]. In this work we propose the use of Dirichlet boundary conditions at Tmin, Tmax. The virial series of the compression factor Z = 1+Bρ+Cρ2+… and other properties leads the problem to the solution of a recursive set of linear ordinary differential equations for the B, C. Analytic solutions of the B equation for Argon are used to study the stability of our approach and previous ones under perturbation errors of the input data. The results show that the approach yields B with a relative error bounded basically by that of the boundary values and the error of other approaches can be some orders of magnitude lager.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.