Abstract

Even after applying effective coregistration methods, multitemporal images are likely to show a residual misalignment, which is referred to as registration noise (RN). This is because coregistration methods from the literature cannot fully handle the local dissimilarities induced by differences in the acquisition conditions (e.g., the stability of the acquisition platform, the off-nadir angle of the sensor, the structure of the considered scene, etc.). This paper addresses the problem of reducing such a residual misalignment by proposing a fine automatic coregistration approach for very high resolution (VHR) multispectral images. The proposed method takes advantage of the properties of the residual misalignment itself. To this end, RN is first extracted in the change vector analysis (CVA) polar domain according to the behaviors of the specific multitemporal images considered. Then, a local analysis of RN pixels (i.e., those showing residual misalignment) is conducted for automatically extracting control points (CPs) and matching them according to their estimated displacement. Matched CPs are used for generating a deformation map by interpolation. Finally, one VHR image is warped to the coordinates of the other through a deformation map. Experiments carried out on simulated and real multitemporal VHR images confirm the effectiveness of the proposed approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.