Abstract
A novel approach to feature selection is proposed for data space defined over continuous features. This approach can obtain a subset of features, such that the subset features can discriminate class labels of objects and the discriminant ability is prior or equivalent to that of the original features, so to effectively improve the learning performance and intelligibility of the classification model. According to the spatial distribution of objects and their classification labels, a data space is partitioned into subspaces, each with a clear edge and a single classification label. Then these labelled subspaces are projected to each continuous feature. The measurement of each feature is estimated for a subspace against all other subspace-projected features by means of statistical significance. Through the construction of a matrix of the measurements of the subspaces by all features, the subspace-projected features are ranked in a descending order based on the discriminant ability of each feature in the matrix. After evaluating a gain function of the discriminant ability defined by the best-so-far feature subset, the resulting feature subset can be incrementally determined. Our comprehensive experiments on the UCI Repository data sets have demonstrated that the approach of the subspace-based feature ranking and feature selection has greatly improved the effectiveness and efficiency of classifications on continuous features.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Multimedia and Ubiquitous Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.