Abstract

In this study oedometric compression tests of hydrocarbon coke, Fontainebleau sand and silica sand are simulated in three dimensions using breakable particles. The method adapts a rigorous breakage criterion for elasto-brittle spheres to represent failure of grains isolated between platens or within granular masses. The breakage criterion allows for the effect of particle bulk and contact properties to be treated separately. A discrete fragmentation multigenerational approach is applied as a spawning procedure. The number of particles quickly increases during the simulation, but is kept manageable by systematic fine exclusion and upscaling. Fine exclusion leads to mass losses between generations, but that loss is accounted for outside the mechanical model. Sensitivity analysis shows that it is enough to keep 53% of the crushed particle mass within the mechanical model to correctly reproduce experimental macroscopic behaviour. Practical upscaling rules are proposed for (a) contact stiffness, (b) breakage criteria and (c) grain size distribution, and validated simulating the same test, reducing by half the initial number of particles. The results are promising as both the mechanical and grading evolution are well captured with two orders of magnitude savings in computing efficiency.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.