Abstract
In this paper we present an approach for identifying near-miss interaction clones in reverse-engineered UML behavioural models. Our goal is to identify patterns of interaction (“conversations”) that can be used to characterize and abstract the run-time behaviour of web applications and other interactive systems. In order to leverage robust near-miss code clone technology, our approach is text-based, working on the level of XMI, the standard interchange serialization for UML. Behavioural model clone detection presents several challenges - first, it is not clear how to break a continuous stream of interaction between lifelines into meaningful conversational units. Second, unlike programming languages, the XMI text representation for UML is highly non-local, using attributes to reference information in the model file remotely. In this work we use a set of contextualizing source transformations on the XMI text representation to reveal the hidden hierarchical structure of the model and granularize behavioural interactions into conversational units. Then we adapt NiCad, a near-miss code clone detection tool, to help us identify conversational clones in reverse-engineered behavioural models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.