Abstract

This work aims at characterizing the probability of wave impact and determining the position of impact on an FPSO (floating production storage and offloading platform) bow geometry. In order to determine the instants when impact occurs, an experimental program was performed on a specific bow shape. The bow was instrumented with pressure transducers and the test program, also making use of video recordings, was designed such that it was possible to determine the correlation between undisturbed wave shape and the impact pressure time traces. It has been found that the wave impact at the bow is highly correlated with the local wave steepness, which for very high waves has at least second-order effects. A comparison between the probability distributions of local wave steepness of the experimental undisturbed wave time trace and numerical simulations of second-order wave theory is provided and it confirmed that the latter is very adequate for calculations. The experimental results were further used to determine how the probability of impact varies with free surface vertical velocity. It was found that the significant wave height of the sea state itself does not have significant influence on the result and a regression model was derived for the bow type in the experiments. The proposed model for determining the probability of having an impact is based on combining distributions, adjusted a priori to the numerically generated second-order free surface vertical velocity, and the experimental probability of impact of a known certain seastate and free surface velocity. The analytical description makes it fast and easy to expand to other cases of interest and some example calculations are shown to demonstrate the relative ease of the procedure proposed. The position of the impact is determined by the nonlinear wave crests and the ship motions. The ship motions can be determined based on a linear response to the nonlinear waves considered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.