Abstract

Fiber Reinforced Plastic (FRP) can be used for strengthening concrete or masonry constructions.One of the main problem in the use of FRP is the possible detachment of the reinforcement from the supportmaterial. This paper deals with the modeling of the FRP-concrete or masonry damage interface, accounting forthe coupling occurring between the degradation of the cohesive material and the FRP detachment. To this end,a damage model is considered for the quasi-brittle material. In order to prevent strain localization and strongmesh sensitivity of the solution, an integral-type of nonlocal model based on the weighted spatial averaging of astrain-like quantity is developed. Regarding the interface, the damage is governed by the relative displacementoccurring at bond. A suitable interface model which accounts for the mode I, mode II and mixed mode ofdamage is developed. The coupling between the body damage and the interface damage is performedcomputing the body damage on the bond surface. Numerical examples are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.