Abstract

Abstract In this paper, an approach is presented for the dynamic modeling and analysis of robotic manipulators having structural flexibility in the links and joints. The formulation allows the user to include different types of flexibilities, as required. This approach includes the dynamic effects of joint driving systems by considering the mass and moments of inertia of their elements, the rotor-link interactions, and the gear reduction ratios; all of which can have significant influences on the behavior of the manipulator. Both distributed-discrete and discretized-discrete parameter models of a robot can be analysed. In the discretized-discrete case, dynamic equations of motion are developed for four model types: rigid link - rigid joint, rigid link - flexible joint, flexible link - rigid joint, and flexible link - flexible joint. An example of a two-link manipulator is considered. Simulation results are presented for different models (flexible joint - rigid link, rigid joint - flexible link, flexible joint - flexible link) of the manipulator. The computations show the influence of joint and link flexibilities on the manipulator performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call