Abstract

The stress distributions in trapezoidal corrugated-core integrated thermal protection system (ITPS) under thermal and mechanical loads are predicted by employing the equivalent sandwich model introduced in our previous study (Gu et al., 2017). The method for prediction of stress based on high-order layerwise theory and the principle of structural mechanics is presented, which considers the effects of temperature-dependent material properties and curvature in sheets. For the top face sheet of ITPS, the local displacement induced by out-of-plane pressure is taken into account in the prediction of stress. And for the bottom face sheet of ITPS, the local displacement induced by corrugated webs is also considered by treating the sheet as beams with proper displacement compatibility. The accuracy of the proposed method is verified by comparison with the results by three-dimensional (3D) finite element analysis. It has been shown that the proposed method requires significantly less computational effort and agrees well with the finite element results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.