Abstract

In this paper, we consider a kind of bilevel linear programming problem where the coefficients of both objective functions are fuzzy numbers. In order to deal with such a problem, the original problem can be approximated by an interval bilevel programming problem in terms of the nearest interval approximation of a fuzzy number. Based on the Karush–Kuhn–Tucker (KKT) optimality conditions for the optimization problem with an interval-valued objective function, the interval bilevel programming problem can be converted into a single-level programming problem with an interval-value objective function. To minimize the interval objective function, the order relations of interval numbers are used to transform the uncertain single-objective optimization into a multi-objective optimization solved by global criteria method (GCM). Finally, illustrative numerical examples are provided to demonstrate the feasibility of the proposed approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.