Abstract
We quantify the resiliency of large scale systems upon changes encountered beyond the normal system behavior. Formal definitions for resiliency and change are provided together with general steps for resiliency quantification and a set of resiliency metrics that can be used to quantify the effects of changes. A formalization of the approach is also shown in the form of a set of four algorithms that can be applied when large scale systems are modeled through stochastic analytic state space models (monolithic models or interacting sub-models). In particular, in the case of interacting submodels, since resiliency quantification involves understanding the transient behavior of the system, fixed-point variables evolve with time leading to non-homogenous Markov chains. At the best of our knowledge, this is the first paper facing this problem in a general way. The proposed approach is applied to an Infrastructure-as-a-Service (IaaS) Cloud use case. Specifically, we assess the impact of changes in demand and available capacity on the Cloud resiliency and we show that the approach proposed in this paper can scale for a real sized Cloud without significantly compromising the accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.