Abstract
With the advances of handwriting capturing devices and computing power of mobile computers, pen-based Chinese text input is moving from character-based input to sentence-based input. This paper proposes a real-time recognition approach for sentence-based input of Chinese handwriting. The main feature of the approach is a dynamically maintained segmentation–recognition candidate lattice that integrates multiple contexts including character classification, linguistic context and geometric context. Whenever a new stroke is produced, dynamic text line segmentation and character over-segmentation are performed to locate the position of the stroke in text lines and update the primitive segment sequence of the page. Candidate characters are then generated and recognized to assign candidate classes, and linguistic context and geometric context involving the newly generated candidate characters are computed. The candidate lattice is updated while the writing process continues. When the pen lift time exceeds a threshold, the system searches the candidate lattice for the result of sentence recognition. Since the computation of multiple contexts consumes the majority of computing and is performed during writing process, the recognition result is obtained immediately after the writing of a sentence is finished. Experiments on a large database CASIA-OLHWDB of unconstrained online Chinese handwriting demonstrate the robustness and effectiveness of the proposed approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.