Abstract

The Earth is being monitored every day by all kinds of sensors. This leads an overflow of data in all branches of science nowadays, especially in Earth Sciences. Data storage and data processing are the problems to be solved by current technologies, as well as by those accessing and analyzing these large data sources. Once solutions have been created for collecting, storing and accessing data, then the challenge becomes how to effectively share data, applications and processing resources across many locations. The Global Positioning System (GPS) sensors are being used as geodetic instruments to precisely detect crustal motion in the Earth's surface. Rapid access to data provided by GPS sensors is becoming increasingly important for deformation monitoring and rapid hazard assessments. Today, reliable and fast collection and distribution of data is a challenge and advances in Internet technologies have made it easier to provide the needed data. This study describes a system which will be able to generate strain maps using data from continuous GPS stations for seismic hazard analysis. Strain rates are a key factor in seismic hazard analyses. Turkey is a country prone to earthquakes with a long history of seismic hazards and disasters. This situation has resulted in the studies by Earth scientists that focus on Turkey in order to improve their understanding of the Earth's crust structure and seismic hazards. Nevertheless, the construction of models, data access and analysis are often not fast as expected, but the combination of Internet technologies with continuous GPS sensors can be a solution to overcome this problem. This system would have the potential to answer many important questions to assess seismic hazards such as how much stretching, squashing and shearing is taking place in different parts of Turkey, and how do velocities change from place to place? Seismic hazard estimation is the most effective way to reduce earthquake losses. It is clear that reliability of data and on-line services will support the preparation of strategies for disaster management and planning to cope with hazards.

Highlights

  • Turkey is an earthquake-prone country has a long history of natural hazards and disasters.Approximately 96 percent of the land containing 66 percent of the active faults is affected by earthquake hazards and 98 percent of its population lives in these regions

  • Scientific understanding of earthquakes is vital for assessing earthquake hazards, and earthquake hazard estimation is the most effective way for Earth scientists to reduce earthquake losses

  • In the future, using sensor web technology, data can be collected from Global Positioning System (GPS) sensor networks and archived, position information can be produced and used for fully automated visualization of deformation for earthquake research

Read more

Summary

Introduction

Turkey is an earthquake-prone country has a long history of natural hazards and disasters. By means of a greater understanding of the causes and effects of earthquakes, it may be possible to reduce the damage and loss of life resulting from of these destructive phenomena. The rapid analysis of the huge amount of raw data gathered by the sensors that are increasing in number, especially in the scientific area of Space Geodesy, has gaining crucial importance for Earth scientists. In this case, if the needs for rapid analysis, interpretation and presentation are secured the end results will ensure the high temporal resolution needed for accurate interpretation of earthquake phenomena, and this in turn should lead to mitigation of earthquake damage

Continuous GPS Sensors
Case Study
Results
Discussion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.