Abstract

SummaryYield and plastic potential surfaces are often affected by problems related to convexity. One such problem is encountered when the yield surface that bounds the elastic domain is itself convex; however, convexity is lost when the surface expands to pass through stress points outside the current elastic domain. In this paper, a technique is proposed, which effectively corrects this problem by providing linear homothetic expansion with respect to the centre of the yield surface. A very compact implicit integration scheme is also presented, which is of general applicability for isotropic constitutive models, provided that their yield and plastic potential functions are based on a separate mathematical definition of the meridional and deviatoric sections and that stress invariants are adopted as mechanical quantities. The elastic predictor‐plastic corrector algorithm is based on the solution of a system of 2 equations in 2 unknowns only. This further reduces to a single equation and unknown in the case of yield and plastic potential surfaces with a linear meridional section. The effectiveness of the proposed convexification technique and the efficiency and stability of the integration scheme are investigated by running numerical analyses of a notoriously demanding boundary value problem.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call