Abstract
AbstractConfinement of molecules in nanoporous crystalline materials results in the unique and diverse characteristics of intracrystalline diffusion and adsorption, which can significantly affect the efficiency of gas separation and/or catalysis. However, understanding the interplay between confinement and intracrystalline diffusion and adsorption remains elusive at the quantitative level. In this work, it is found that the intracrystalline diffusion could be related to the hopping rate, which might be further connected to the translational and rotational motion of molecules and quantified by corresponding partition functions. Based on this analysis, the correlations capable of predicting the intracrystalline diffusivity and the adsorption entropy are developed. It is shown that the correlations can well capture the experimental and simulation results of more than 20 frameworks, including zeolites and MOFs, for a wide range of guest molecules. This approach can potentially serve as rapid screening tool for nanoporous crystalline materials in gas separation and catalysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.