Abstract
To deal with pattern classification of complicated mechanical faults, an approach to multi-faults classification based on generalized discriminant analysis is presented. Compared with linear discriminant analysis (LDA), generalized discriminant analysis (GDA), one of nonlinear discriminant analysis methods, is more suitable for classifying the linear non-separable problem. The connection and difference between KPCA (Kernel Principal Component Analysis) and GDA is discussed. KPCA is good at detection of machine abnormality while GDA performs well in multi-faults classification based on the collection of historical faults symptoms. When the proposed method is applied to air compressor condition classification and gear fault classification, an excellent performance in complicated multi-faults classification is presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.