Abstract

Setting up simulation scenarios in the field of Supply Chains (SCs) is a big challenge because complex input data must be specified and careful input data management as well as precise model design are necessary. SC simulation needs a large amount of input data -- especially in times of big data, in which the data is often approximated by statistical distributions from real world observations. This paper deals with the question how the model itself and its input can be effectively complemented. This takes into account the commonly known fact, that the accuracy of a model output depends on the model input. Therefore an approach for using techniques of Knowledge Discovery in Databases is introduced to derive logical relations from the data. We discuss how Knowledge Discovery would be applied, as a preprocessing step for simulation scenario setups, in order to provide benefits for the level of accuracy in simulation models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.