Abstract

Telemetry systems that estimate animal positions with hyperbolic positioning algorithms also provide a technology-specific estimate of position precision (e.g., horizontal position error (HPE) for the VEMCO positioning system). Position precision estimates (e.g., dilution of precision for a global positioning system (GPS)) have been used extensively to identify and remove positions with unacceptable measurement error in studies of terrestrial and surfacing aquatic animals such as turtles and seals. Few underwater acoustic telemetry studies report using position precision estimates to filter data in accordance with explicit data quality objectives because the relationship between the precision estimate and measurement error is not understood or not evaluated. A four-step filtering approach which incorporates data-filtering principles developed for GPS tracking of terrestrial animals is demonstrated. HPE was evaluated for its effectiveness to remove uncertain fish positions acquired from a new underwater fine-scale passive acoustic monitoring system. Four filtering objectives were identified based on the need for three sequential future analyses and four data quality criteria were developed for evaluating the performance of individual filters (step 1). The unfiltered, baseline position confidence from known-position test tags was considered to determine if filtering was necessary (step 2). An HPE filter cutoff of 8 was selected to meet the four criteria (step 3), and it was determined that one analysis may need to be adjusted for use with this dataset. The data quality objectives, criteria, and filter selection rationale were reported (step 4). The use of position precision estimates that reflect the confidence in the positioning process should be considered prior to the use of biological filters that rely on a priori expectations of the subject’s movement capacities and tendencies. Position confidence goals should be determined based upon the needs of the research questions and analysis requirements versus arbitrary selection, in which filters of previous studies are adopted. Data filtering with this approach ensures that data quality is sufficient for the selected analyses and presents the opportunity to adjust or identify a different analysis in the event that the requisite precision was not attained. Ignoring these steps puts a practitioner at risk of reporting errant findings.

Highlights

  • Telemetry systems that estimate animal positions with hyperbolic positioning algorithms provide a technology-specific estimate of position precision (e.g., horizontal position error (HPE) for the VEMCO positioning system)

  • The dataset included recorded positions taken from stationary tags (9 synch-tags and two additional stationary position tags), three mobile tag tests, and animal location data recorded for 76 free-swimming adult female sea lampreys (Petromyzon marinus) with surgically-implanted tags (V9P-2H, 15 to 45 second transmission rate). With this dataset we demonstrate a framework for filtering VEMCO Positioning System (VPS) data with HPE, provide a comparison to current filtering approaches used by other VPS studies, and contrast the advantages of position precision estimate (PPE) based filters and biological filters

  • PPE’s are calculated for each position obtained from the telemetry apparatus, whereas biological filters ignore the positioning process and only evaluate resultant positions based on an expectation of what is biologically reasonable for the study species

Read more

Summary

Introduction

Telemetry systems that estimate animal positions with hyperbolic positioning algorithms provide a technology-specific estimate of position precision (e.g., horizontal position error (HPE) for the VEMCO positioning system). Two common approaches involve the use of biological filters, which equate to detecting violations of an animal’s expected maximum movement capacity (e.g., maximum observed velocity) or known habits (e.g., observing a fish on land), or a position precision estimate (PPE) in which each measured position has an associated positionspecific estimate of measurement error or confidence. We outline a widely applicable approach to use a PPE to remove positions with unacceptable measurement error, and provide an example of a specific application to a telemetry dataset collected from an underwater acoustic positioning system, the VEMCO Positioning System (hereafter VPS; VEMCO Division of AMIRIX Systems; Halifax, Nova Scotia)

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call