Abstract
PurposeFault-related monitoring variables selection is a process of obtaining a subset of variables from the original set, which is of great significance for reducing information redundancy and improving the performance of the fault diagnosis models. This paper aims to propose a novel variables selection approach based on complex networks.Design/methodology/approachFirstly, a dual-layer correlation networks (DlCN) which consists of mechanism-oriented correlation sub-network (MoCSN) and data-oriented correlation sub-network (DoCSN) is constructed. Secondly, an algorithm for identifying critical fault-related monitoring variables based on dual correlations is introduced. In the algorithm, the topological attributes of the MoCSN and correlation threshold of the DoCSN are used successively.FindingsIn the experiments of vertical elevator fault diagnosis, the critical fault-related monitoring variables selected by the DlCN-based approach is more effective than the traditional approaches. It indicates that fusion mechanism-oriented correlation can enhance the comprehensiveness of variable correlation analysis. Moreover, the approach has been proved to be adaptable to different fault diagnosis models.Originality/valueIn the DlCN-based variables selection approach, the mechanism-oriented correlation and data-oriented correlation are comprehensively considered. It improves the precision of variables selection. Meanwhile, it is an unsupervised and model-agnostic approach which addresses the shortcomings of some conventional approaches that require data labels and have insufficient adaptability for fault diagnosis models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Intelligent Manufacturing and Special Equipment
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.