Abstract

The demand for electricity has been increasing worldwide and it is predicted that this trend will be particularly reinforced in developing countries by the gradual electrification of the transport sector and heat generation in buildings. The energy supply infrastructure required to meet the additional electricity demand should be carefully managed in light of the climate change carbon emission targets and commitments. A large proportion of the new electricity loads will be met from renewable sources. Therefore, means of power storage become vital to smooth out the intermittent nature of these energy supplies. The introduction of Electric Vehicles (EVs) could provide a viable and dynamic power storage solution through the concept of Vehicle-to-everything (V2X). This involves the storage of renewable energy (RE) in EV batteries during the charging cycle and restitution to the grid (V2G) or homes (V2H) when needed. In this context, this paper presents a methodology involving several strategies to stabilise the grid system and examines the impact of various types of EVs and heat pumps (HPs) for supplying heat in buildings. The results of this research approach show that the synergy of using V2H could reduce the carbon footprint of a typical domestic building in the United Kingdom (UK) by up to 87% and potentially recover up to 21.9 kWh/day of surplus renewable energy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call