Abstract

Product design Verification and Validation (V&V) is an integral part of the new product development process to verify that the newly developed product meets its engineering specifications and fulfills its intended functions. A V&V planning assigns various V&V activities such as various engineering tests and analytics to achieve expected product performance. This paper investigates a method for optimizing product design V&V planning in the early stages of product development to maximize the product reliability improvement. The proposed V&V planning model considers the priorities of the failure modes based on failure rate, detectability, and consequences. The sequencing of performing V&V activities and the effectiveness of each V&V activity in reducing failure rate and improving failure detectability are also considered. The objective of the V&V optimization model is to maximize the system reliability improvement by optimally selecting a set of V&V activities. The sequencing for V&V activities is formulated using the job shop scheduling concept. The set covering problem concept is applied to assure that all critical failure modes are covered. A V&V planning example of an engine power unit development is demonstrated and the results are compared with existing planning methods, which shows the advantages of the proposed V&V planning approach.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call