Abstract

A unique perspective in design optimization of helical gear pair has been emerged and presented in this article. Specific sliding needs to be balanced for enhancing wear and scuffing resistance of helical gears. Optimized modification in tooth profile has immense benefits in gear operations. Effect of profile shift and specific sliding on design optimization of helical gear pair have been studied and found to be beneficial of great importance. Preventing undercutting, balancing of wear and bending fatigue strength and centre distance adjustment are some of the advantages of profile tooth modifications. Real-coded genetic algorithm (RCGA) has been used to attain minimum volume of helical gear pair. Profile shift coefficients for gear and pinion have been included as design variables along with mostly used generic design variables, module, face width and number of teeth on pinion. Specific sliding, transverse contact ratio and face width constraint along with other strength requirements are the design constraints. The optimal design solutions obtained with and without profile shift are recorded and compared with commercially used software for validation. 3D computer-aided design (CAD) models have been developed by using the optimized results obtained from RCGA and commercially used software. These CAD models are used for performing finite element analysis (FEA) on the helical gear set for analyzing the stress developed in the gear pair. The developed stress in the helical gear pair is found to be well within the allowable stress limits for the gear pair.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.