Abstract
AbstractDetecting communities is of great importance in social network analysis. However it is an issue that has not yet been satisfactorily solved, despite the efforts made by interdisciplinary research communities over the past few years, because of the nature of complexity in deciding how community structures should be recognized. In this paper we propose an approach based on cooperative game theory for community detection in social networks. We regard individuals as players, and regard communities as coalitions formed by players, and model community detection problem as the formation and optimization of coalitions. Furthermore, we define coalition profile for players to indicate coalitions that players joined, the order of a coalition profile is defined as the number of coalitions in a coalition profile, and we introduce a utility function to measure preference of coalition profiles. Accordingly, we propose an algorithm to detect a coalition profile with maximal utility function values. We have implemented the algorithms developed in this study and experimental results demonstrate the effectiveness of our approaches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.